Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасская государственная сельскохозяйственная академия» Кафедра педагогических технологий

ФОНД ОЦЕНОЧНЫХСРЕДСТВ

ПРИЛОЖЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.04 МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

для студентов направления подготовки 36.05.01 Ветеринария Специализация Ветеринарный врач

Разработчик: Кондаурова И.Г.

СОДЕРЖАНИЕ

1 ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАП ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ	
1.1 Перечень компетенций	
1.2 Показатели и критерии оценивания компетенций на различных этапах их формировани	
1.3 Описание шкал оценивания	8
1.4 Общая процедура и сроки проведения оценочных мероприятий	9
2 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ	11
2.1 Текущий контроль знаний студентов	11
2.2 Промежуточная аттестация	33
2.3 Типовой вариант экзаменационного тестирования	37
2.4 Типовой экзаменационный билет	44
3 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ	46

1 ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

1.1 Перечень компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;
- ОПК-4 способность к самообразованию и использованию в практической деятельности новых знаний и умений, в том числе в областях знаний, непосредственно не связанных со сферой профессиональной деятельности.

1.2 Показатели и критерии оценивания компетенций на различных этапах их формирования

Конечными результатами освоения программы дисциплины являются сформированные когнитивные дескрипторы «знать», «уметь», «владеть» (31, У1, В1, 32, У2, В2, З3, У3, В3), расписанные по отдельным компетенциям. Формирование этих дескрипторов происходит в течение изучения дисциплины по этапам в рамках различного вида занятий и самостоятельной работы.

Таблица 1 – Соответствие этапов (уровней) освоения компетенции планируемым результатам обучения и критериям их оценивания

Этап (уровень)	Планируемые		Kl	оитерии оценивания резу	льтатов обучения		Опенолные
освоения компетенции	результаты обучения	1	2	3	4	5	средства
УК-1 Способен осуще	ствлять поиск, критичес	кий анализ	в и синтез информации, пр	именять системный подхо	д для решения поставленн	ных задач	
Первый этап (начало	Владеть: навыками определения действий по решению задач В1	Не владеет	Фрагментарное владение навыками определения действий по решению задач	В целом успешное, но не систематическое владение навыками определения действий по решению задач	В целом успешное, но содержащее отдельные пробелы владения навыками определения действий по решению задач	Успешное и систематическое владение навыками определения действий по решению задач	Тест, собеседование, экзаменационные материалы
формирования) Анализирует задачу, осуществляет её декомпозицию, выделяет этапы и действия по	Уметь: анализировать поставленные задачи, выделять основные этапы У1	Не умеет	Фрагментарное умение анализировать поставленные задачи, выделять основные этапы	В целом успешное, но не систематическое умение анализировать поставленные задачи, выделять основные этапы	В целом успешное, но содержащее отдельные пробелы умения анализировать поставленные задачи, выделять основные этапы	Успешное и систематическое умение анализировать поставленные задачи, выделять основные этапы областях	Тест, собеседование, экзаменационные материалы
решению задачи.	Знать: основы анализа и декомпозиции задач 31	Не знает	Фрагментарные знания об основах анализа и декомпозиции задач	В целом успешные, но не систематические знания об основах анализа и декомпозиции задач	В целом успешные, но содержащие отдельные пробелы знания об основах анализа и декомпозиции задач	Успешные и систематические знания об основах анализа и декомпозиции задач	Собеседование, экзаменационные материалы
Второй этап (продолжение формирования) Осуществляет поиск и критический анализ информации, необходимой для	Владеть: приемами поиска и систематизации информации, необходимой для решения поставленных задач В2	Не владеет	Фрагментарное владение приемами поиска и систематизации информации, необходимой для решения поставленных задач	В целом успешное, но не систематическое владение приемами поиска и систематизации информации, необходимой для решения поставленных задач	В целом успешное, но содержащее отдельные пробелы владения приемами поиска и систематизации информации, необходимой для решения поставленных задач	Успешное и систематическое владение приемами поиска и систематизации информации, необходимой для решения поставленных задач	Тест, собеседование, экзаменационные материалы

Этап (уровень)	Планируемые		КІ	ритерии оценивания резу	льтатов обучения		Опеночные
освоения компетенции	результаты обучения	1	2	3	4	5	средства
решения поставленных задач	Уметь: использовать различные способы поиска и анализа информации У2	Не умеет	Фрагментарное умение использовать различные способы поиска и анализа информации	В целом успешное, но не систематическое умение использовать различные способы поиска и анализа информации	В целом успешное, но содержащее отдельные пробелы умения использовать различные способы поиска и анализа информации	Успешное и систематическое умение использовать различные способы поиска и анализа информации	Тест, собеседование, экзаменационные материалы
	Знать: основы критического анализа, поиска и синтеза информации 32	Не знает	Фрагментарные знания об основах критического анализа, поиска и синтеза информации	В целом успешные, но не систематические знания об основах критического анализа, поиска и синтеза информации	В целом успешные, но содержащие отдельные пробелы знания об основах критического анализа, поиска и синтеза информации	Успешные и систематические знания об основах критического анализа, поиска и синтеза информации	Собеседование, экзаменационные материалы
Третий этап	Владеть: навыками оценки различных вариантов решений задач В3	Не владеет	Фрагментарное владение навыками оценки различных вариантов решений задач	В целом успешное, но не систематическое владение навыками оценки различных вариантов решений задач	В целом успешное, но содержащее отдельные пробелы владения навыками оценки различных вариантов решений задач	Успешное и систематическое владение навыками оценки различных вариантов решений задач	Тест, собеседование, экзаменационные материалы
(продолжение формирования) Рассматривает различные варианты решения задачи, оценивает их преимущества и	Уметь: оценивать преимущества и риски различных вариантов решений задач У3	Не умеет	Фрагментарное умение оценивать преимущества и риски различных вариантов решений задач	В целом успешное, но не систематическое умение оценивать преимущества и риски различных вариантов решений задач	В целом успешное, но содержащее отдельные пробелы умения оценивать преимущества и риски различных вариантов решений задач	Успешное и систематическое умение оценивать преимущества и риски различных вариантов решений задач	Тест, собеседование, экзаменационные материалы
риски	Знать: методы оценки различных факторов при решении задач 33	Не знает	Фрагментарные знания о методах оценки различных факторов при решении задач	В целом успешные, но не систематические знания о методах оценки различных факторов при решении задач	В целом успешные, но содержащие отдельные пробелы знания о методах оценки различных факторов при решении задач	Успешные и систематические знания о методах оценки различных факторов при решении задач	Собеседование, экзаменационные материалы
			ессиональной деятельности вные понятия, а также мето			оно-инструментальной баз	ы и использовать
Первый этап (начало формирования) Способен использовать основные	Владеть: основными естественными, биологическими и профессиональными понятиями и	Не владеет	Фрагментарное владение основными естественными, биологическими и профессиональными понятиями и методами	В целом успешное, но не систематическое владение основными естественными, биологическими и профессиональными	В целом успешное, но содержащее отдельные пробелы владения основными естественными, биологическими и	Успешное и систематическое владение основными естественными, биологическими и профессиональными	Тест, собеседование, экзаменационные материалы

Этап (уровень)	Планируемые		Кр	ритерии оценивания резу	льтатов обучения		Опеночные
освоения компетенции	результаты обучения	1	2	3	4	5	средства
естественные, биологические и профессиональные понятия, а также методы при	методами при решении общепрофессиональн ых задач В1		при решении общепрофессиональны х задач	понятиями и методами при решении общепрофессиональны х задач	профессиональными понятиями и методами при решении общепрофессиональны х задач	понятиями и методами при решении общепрофессиональны х задач	
решении общепрофессиональ ных задач	Уметь: использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональн ых задач У1	Не умеет	Фрагментарное умение использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональны х задач	В целом успешное, но не систематическое умение использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональны х задач	В целом успешное, но содержащее отдельные пробелы умения самостоятельно использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональны х задач	Успешное и систематическое умение использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональны х задач	Тест, собеседование, экзаменационные материалы
	Знать: основные естественные, биологические и профессиональные понятия и методы при решении общепрофессиональн ых задач 31	Не знает	Фрагментарные знания об основных естественных, биологических и профессиональных понятиях и методах при решении общепрофессиональных задач	В целом успешные, но не систематические знания об основных естественных, биологических и профессиональных понятиях и методах при решении общепрофессиональных задач	В целом успешные, но содержащие отдельные пробелы знания об основных естественных, биологических и профессиональных понятиях и методах при решении общепрофессиональных задач	Успешные и систематические знания об основных естественных, биологических и профессиональных понятиях и методах при решении общепрофессиональных задач	Собеседование, экзаменационные материалы
Второй этап (завершение формирования) Способен обосновывать и реализовывать в профессиональной деятельности современные технологии с	Владеть: современными технологиями с использованием приборно- инструментальной базы при решении общепрофессиональн ых задач В2	Не владеет	Фрагментарное владение современными технологиями с использованием приборно-инструментальной базы при решении общепрофессиональны х задач	В целом успешное, но не систематическое владение современными технологиями с использованием приборно-инструментальной базы при решении	В целом успешное, но содержащее отдельные пробелы владения современными технологиями с использованием приборно-инструментальной базы при решении	Успешное и систематическое владение современными технологиями с использованием приборно-инструментальной базы при решении	Тест, собеседование, экзаменационные материалы

Этап (уровень)	Планируемые		Кј	ритерии оценивания резу	льтатов обучения		Опеночные
освоения компетенции	результаты обучения	1	2	3	4	5	средства
использованием приборно-				общепрофессиональны х задач	общепрофессиональны х задач	общепрофессиональны х задач	
инструментальной			Фрагментарное умение	В целом успешное, но	В целом успешное, но	Успешное и	
базы	Уметь:		обосновывать и	не систематическое	содержащее отдельные	систематическое	
	обосновывать и		реализовывать в	умение обосновывать и	пробелы умения	умение обосновывать и	
	реализовывать в		профессиональной	реализовывать в	обосновывать и	реализовывать в	
	профессиональной		деятельности	профессиональной	реализовывать в	профессиональной	Тест,
	деятельности	Не	современные	деятельности	профессиональной	деятельности	собеседование,
	современные	умеет	технологии с	современные	деятельности	современные	экзаменационные
	технологии с	J ======	использованием	технологии с	современные	технологии с	материалы
	использованием		приборно-	использованием	технологии с	использованием	1
	приборно-		инструментальной	приборно-	использованием	приборно-	
	инструментальной		базы	инструментальной	приборно-	инструментальной	
	базы У2			базы	инструментальной базы	базы	
			Фрагионтории из значия	В напом маначиния на	В целом успешные, но	Успешные и	
	Знать:		Фрагментарные знания	В целом успешные, но не систематические	•	систематические	
	современные		о современных технологиях с	знания о современных	содержащие отдельные пробелы знания о	знания о современных	
	технологии с		использованием	технологиях с	современных	технологиях с	
	использованием		приборно-	использованием	технологиях с	использованием	Собеседование,
	приборно-	He	инструментальной	приборно-	использованием	приборно-	экзаменационные
	инструментальной	знает	базы при решении	инструментальной	приборно-	инструментальной	материалы
	базы при решении		общепрофессиональны	базы при решении	инструментальной	базы при решении	
	общепрофессиональн		х задач	общепрофессиональны	базы при решении	общепрофессиональны	
	ых задач			х задач	общепрофессиональны	х задач	
	32				х задач		

Этапы формирования компетенций реализуются в ходе освоения дисциплины, что отражается в тематическом плане дисциплины.

1.3 Описание шкал оценивания

Для оценки составляющих компетенции при **текущем контроле и промежуточной аттестации** используется балльно-рейтинговая система оценок. При оценке контрольных мероприятий преподаватель руководствуется критериями оценивания результатов обучения (таблица 1), суммирует баллы за каждое контрольное задание и переводит полученный результат в вербальный аналог, руководствуясь таблицей 2 и формулой 1.

Таблица 2 – Сопоставление оценок когнитивных дескрипторов с результатами освоения программы дисциплины

Балл	Соответствие требованиям критерия	Выполнение критерия	Вербальный ана	лог
1	2	3	4	
5	результат, содержащий полный правильный ответ, полностью соответствующий требованиям критерия	85-100% от максимального количества баллов	отлично	
4	результат, содержащий неполный правильный ответ (степень полноты ответа – более 65%) или ответ, содержащий незначительные неточности, т.е. ответ, имеющий незначительные отступления от требований критерия	65-84,9% от максимального количества баллов	хорошо	зачтено
3	результат, содержащий неполный правильный ответ (степень полноты ответа – до 65%) или ответ, содержащий незначительные неточности, т.е. ответ, имеющий незначительные отступления от требований критерия	50-64,9% от максимального количества баллов	удовлетворительно	
2	результат, содержащий неполный правильный ответ, содержащий значительные неточности, ошибки (степень полноты ответа – менее 50%)	до 50% от максимального количества баллов	HAVIOR HATROPHTAIN NO.	не
1	неправильный ответ (ответ не по существу задания) или отсутствие ответа, т.е. ответ, не соответствующий полностью требованиям критерия	0% от максимального количества баллов	неудовлетворительно	зачтено

Расчет доли выполнения критерия от максимально возможной суммы баллов проводится по формуле 1:

$$A = \frac{\sum_{i=1}^{n} m_{i} k_{i}}{5 \cdot \sum_{i=1}^{n} m_{i}} \cdot 100\%$$
 (1)

где n — количество формируемых когнитивных дескрипторов; m_i — количество оценочных средств і-го дескриптора;

 k_i – балльный эквивалент оцениваемого критерия і-го дескриптора;

5 — максимальный балл оцениваемого результата обучения.

Затем по таблице 2 (столбец 3) определяется принадлежность найденного значения A (в %) к доле выполнения критерия и соответствующий ему вербальный аналог.

Вербальным аналогом результатов зачета являются оценки «зачтено / не зачтено», экзамена — «отлично», «хорошо», «удовлетворительно», «неудовлетворительно», которые заносятся в экзаменационную (зачетную) ведомость (в то числе электронную) и зачетную книжку. В зачетную книжку заносятся только положительные оценки. Подписанный преподавателем экземпляр ведомости сдаётся не позднее следующего дня в деканат, а второй хранится на кафедре.

В случае неявки студента на экзамен (зачет) в экзаменационной ведомости делается отметка «не явился».

1.4 Общая процедура и сроки проведения оценочных мероприятий

Оценивание результатов обучения студентов по дисциплине осуществляется по регламентам текущего контроля и промежуточной аттестации.

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы студентов. Объектом текущего контроля являются конкретизированные результаты обучения (учебные достижения) по дисциплине.

Свой фактический рейтинг студент может отслеживать в системе электронного обучения Кузбасской ГСХА (журнал оценок)

https://moodle.ksai.ru/grade/report/user/index.php?id=14714 (1 семестр), https://moodle.ksai.ru/grade/report/user/index.php?id=14715 (2 семестр).

При возникновении спорной ситуации, оценка округляется в пользу студента (округление до десятых).

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины (или её части). Форма промежуточной аттестации по дисциплине определяется рабочим учебным планом.

Итоговая оценка определяется на основании таблицы 2.

Организация и проведение промежуточной аттестации регламентируется внутренними локальными актами.

Классическая форма сдачи экзамена (собеседование)

Экзамен проводится в учебных аудиториях института. Студент случайным образом выбирает билет. Для подготовки к ответу студенту отводится 60 минут. Экзаменатор может задавать студентам дополнительные вопросы сверх билета по программе дисциплины.

Во время подготовки, использование конспектов лекций, методической литературы, мобильных устройств связи и других источников информации запрещено. Студент, уличенный в списывании, удаляется из аудитории и в зачетно-экзаменационную ведомость ставится «неудовлетворительно». В случае

добровольного отказа отвечать на вопросы билета, преподаватель ставит в ведомости оценку «неудовлетворительно».

Студенты имеют право делать черновые записи только на черновиках выданных преподавателем.

Экзаменационное тестирование

Экзаменационное тестирование проводится в день экзамена в формате компьютерного тестирования в системе электронного обучения https://moodle.ksai.ru/mod/quiz/view.php?id=464119 (1 семестр), https://moodle.ksai.ru/mod/quiz/view.php?id=479268 (2 семестр).

Для проведения тестирования выделяется аудитория, оснащенная компьютерами с доступом в сеть интернет. В ходе выполнения теста использование конспектов лекций, методической литературы, мобильных устройств связи и других источников информации запрещено. Результаты студента, нарушившего правила проведения экзаменационного тестирования, аннулируются. Студенты имеют право делать черновые записи только на черновиках выданных преподавателем, при проверке черновые записи не рассматриваются.

Проверка теста выполняется автоматически, результат сообщается студенту сразу после окончания тестирования.

Итоговый тест состоит из 15 вопросов, скомпонованных случайным образом. Время тестирования 90 минут.

Студенты, не прошедшие промежуточную аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

2 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ

2.1 Текущий контроль знаний студентов

Комплект вопросов для собеседования

Раздел 1. Элементы линейной и векторной алгебры

- 1. Определители II, III порядка.
- 2. Свойства определителей.
- 3. Алгебраическое дополнение элемента определителя.
- 4. Способы вычисления определителей.
- 5. Решение систем линейных уравнений методом Крамера.
- 6. Понятие матрицы. Виды матриц.
- 7. Действия над матрицами.
- 8. Обратная матрица.
- 9. Матричный метод решения систем линейных уравнений.
- 10. Решение систем линейных уравнений методом Гаусса.
- 11. Ранг матрицы.
- 12. Теорема Кронекера-Капели.
- 13. Исследование систем m-линейных с n-неизвестными.
- 14. Координаты в пространстве. Понятие вектора.
- 15. Проекция вектора на ось и на оси координат.
- 16. Разложение вектора по базису.
- 17. Линейные операции над векторами.
- 18. Направляющие косинусы вектора.
- 19. Скалярное произведение векторов, его свойства.
- 20. Выражение скалярного произведения через координаты векторов.
- 21. Угол между векторами.
- 22. Условие перпендикулярности векторов.
- 23. Векторное произведение векторов, его свойства.
- 24. Выражение векторного произведения через координаты векторов.
- 25. Условие параллельности векторов.
- 26. Геометрический смысл векторного произведения.
- 27. Смешанное произведение трех векторов, его свойства.
- 28. Выражение смешанного произведения через координаты векторов.
- 29. Условие компланарности трех векторов.
- 30. Геометрический смысл смешанного произведения.

Раздел 2. Введение в математический анализ

- 1. Понятие функции, способы задания.
- 2. Сложная функция.
- 3. Неявное задание функции.
- 4. Параметрическое задание функции.
- 5. Ограниченные функции.
- 6. Последовательность. Предел последовательности.

- 7. Предел функции при $x \rightarrow a$.
- 8. Односторонние пределы.
- 9. Связь между односторонними пределами и пределом функции.
- 10. Предел функции при $x \rightarrow \infty$.
- 11. Функция, стремящаяся к бесконечности.
- 12. Бесконечно-большая величина.
- 13. Бесконечно-малые величины и их свойства.
- 14. Связь между бесконечно-малыми и бесконечно-большими величинами.
- 15. Основные теоремы о пределах.
- 16. Первый замечательный предел.
- 17. Второй замечательный предел.
- 18. Непрерывность функции.
- 19. Точки разрыва функции.
- 20. Классификация точек разрыва.

Раздел 3. Дифференциальное исчисление функции одной переменной

- 1. Понятие производной.
- 2. Геометрический смысл производной.
- 3. Уравнение касательной и нормали.
- 4. Физический смысл производной.
- 5. Дифференцируемость функций.
- 6. Основные правила дифференцирования функций.
- 7. Таблица основных производных.
- 8. Производная сложной функции.
- 9. Производная функции, заданной неявно.
- 10. Производная логарифмической функции.
- 11. Сложная показательная функция.
- 12. Логарифмическое дифференцирование.
- 13. Производная обратной функции.
- 14. Производные обратных тригонометрических функций.
- 15. Производные функций, заданных параметрически.
- 16. Дифференциал функции.
- 17. Приложения дифференциала.
- 18. Геометрическое значение дифференциала.
- 19. Производные высших порядков.
- 20. Механическое значение второй производной.
- 21. Дифференциалы различных порядков.
- 22. Правило Лопиталя.
- 23. Основные теоремы дифференциального исчисления.
- 24. Признак монотонности функции.
- 25. Точки локального экстремума.
- 26. Необходимое условие локального экстремума.
- 27. Достаточные условия локального экстремума.
- 28. Точки перегиба графика функции.
- 29. Направление выпуклости функции.
- 30. Необходимое условие существования точки перегиба.

- 31. Достаточное условие существования точки перегиба.
- 32. Асимптоты графика функции.
- 33. Общая схема исследования и построения графика функции.
- 34. Наибольшее и наименьшее значение функции на отрезке.
- 35. Приложения дифференциального исчисления к задачам геометрии.

Раздел 4. Интегральное исчисление функции одной переменной

- 1. Первообразная функции и неопределенный интеграл.
- 2. Основные свойства неопределенного интеграла.
- 3. Непосредственное интегрирование.
- 4. Интегрирование подстановкой в неопределенном интеграле.
- 5. Интегрирование по частям в неопределенном интеграле.
- 6. Интегрирование простейших рациональных дробей.
- 7. Разложение рациональных дробей на простейшие.
- 8. Метод неопределенных коэффициентов.
- 9. Интегрирование тригонометрических функций.
- 10. Универсальная тригонометрическая подстановка.
- 11. Определенный интеграл. Его геометрический смысл.
- 12. Основные свойства определенного интеграла.
- 13. Вычисление определенного интеграла. Формула Ньютона-Лейбница.
- 14. Метод замены переменной в определенном интеграле.
- 15. Интегрирование по частям в определенном интеграле.
- 16. Несобственный интеграл. Интегралы с бесконечными пределами.
- 17. Несобственный интеграл. Интегралы от разрывных функций.
- 18. Приближенное вычисление определенных интегралов.
- 19. Вычисление площади криволинейной трапеции.
- 20. Вычисление длины дуги кривой.
- 23. Вычисление площади криволинейного сектора.
- 24. Вычисление объема тела вращения.
- 25. Вычисление площади поверхности вращения.

Раздел 5. Дифференциальные уравнения

- 1. Дифференциальные уравнения первого порядка.
- 2. Дифференциальные уравнения с разделяющимися переменными.
- 3. Уравнения в полных дифференциалах.
- 4. Однородные дифференциальные уравнения первого порядка.
- 5. Линейные дифференциальные уравнения первого порядка.
- 6. Уравнение Бернулли.
- 7. Дифференциальные уравнения второго порядка.
- 8. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- 9. Линейные однородные уравнения второго порядка с постоянными коэффициентами.
- 10. Линейные неоднородные уравнения второго порядка с постоянными коэффициентами.

Раздел 6. Основы теории вероятностей

- 1. Основные понятия теории вероятностей. Виды событий.
- 2. Классическое определение вероятности.
- 3. Основные формулы комбинаторики.
- 4. Относительная частота. Устойчивость относительной частоты.
- 5. Сумма и произведение двух (нескольких) событий.
- 6. Теорема сложения вероятностей несовместных событий.
- 7. Полная группа событий.
- 8. Теорема сложения вероятностей событий, образующих полную группу.
- 9. Противоположные события.
- 10. Теорема сложения вероятностей противоположных событий.
- 11. Зависимые и независимые события.
- 12. Теорема умножения вероятностей независимых событий.
- 13. Вероятность появления хотя бы одного события.
- 14. Условная вероятность.
- 15. Теорема вероятности совместного появления зависимых событий.
- 16. Теорема вероятности суммы двух совместных событий.
- 17. Формула полной вероятности.
- 18. Формула Байеса.
- 19. Повторные независимые испытания. Формула Бернулли.
- 20. Локальная теорема Лапласа.
- 21. Интегральная теорема Лапласа.
- 22. Случайные величины. Виды случайных величин.
- 23. Дискретная случайная величина. Закон ее распределения. Многоугольник распределения.
 - 24. Простейший поток событий. Формула Пуассона.
 - 25. Числовые характеристики случайных величин.
 - 26. Математическое ожидание и его свойства.
 - 27. Дисперсия, свойства дисперсии, способы вычисления дисперсии.
 - 28. Среднее квадратическое отклонение.
 - 29. Начальные и центральные моменты.
 - 30. Интегральная функция распределения и ее свойства.
 - 31. График интегральной функции распределения.
 - 32. Дифференциальная функция распределения, ее свойства.
 - 33. График дифференциальной функции распределения.
- 34. Вычисление интегральной функции распределения по известной дифференциальной функции.
 - 35. Равномерное распределение вероятностей.
 - 36. Числовые характеристики равномерного распределения.
 - 37. Нормальный закон распределения.
 - 38. График плотности нормального распределения.
 - 39. Числовые характеристики нормального распределения.
 - 40. Вероятность попадания в заданный интервал.

Раздел 7. Математическая статистика

1. Генеральная и выборочная совокупность.

- 2. Способы случайного отбора.
- 3. Статистическое распределение выборки.
- 4. Эмпирическая функция распределения.
- 5. Полигон статистического распределения.
- 6. Гистограмма статистического распределения.
- 7. Выборочное среднее.
- 8. Выборочная и исправленная дисперсия.
- 9. Выборочное и исправленное среднее квадратическое отклонение.
- 10. Мода.
- 11. Медиана.
- 12. Размах вариации.
- 13. Коэффициент вариации.
- 14. Асимметрия эмпирического распределения.
- 15. Эксцесс эмпирического распределения.
- 16. Доверительные интервалы оценки математического ожидания нормального распределения при известном среднем квадратическом отклонении.
- 17. Доверительные интервалы оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении.
- 18. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.
- 19. Доверительные интервалы для оценки вероятности по относительной частоте.
- 20. Свойства доверительных интервалов.
- 21. Понятие статистической гипотезы.
- 22. Статистический критерий проверки нулевой гипотезы.
- 23. Проверка гипотезы о нормальном распределении.
- 24. Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона.
- 25. Проверка гипотезы о независимости двух случайных величин по критерию Пирсона.

Комплект тестовых заданий по разделам

Раздел: Элементы линейной и векторной алгебры

1. Определитель
$$\begin{vmatrix} 1 & -4 & 0 \\ 3 & -10 & -8 \\ -2 & 5 & 3 \end{vmatrix}$$
 равен ...

- A) -30
- Б) 10
- B) 38
- Γ) -18

2. Если
$$(x_0; y_0)$$
 – решение системы линейных уравнений $\begin{cases} 2x - 3y = 10, \\ 2x - y = 0. \end{cases}$, то $x_0 + y_0$

равно ...

A)
$$-7,5$$

3. Алгебраическое дополнение элемента
$$a_{11}$$
 матрицы $A = \begin{pmatrix} 4 & -3 & 1 \\ 2 & 5 & -7 \\ 3 & -2 & 1 \end{pmatrix}$ равно ...

4. Если
$$A = \begin{pmatrix} -1 & 2 \\ 4 & -5 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$, то матрица $C = 2A + B$ имеет вид ...

$$A) \begin{pmatrix} -1 & 3 \\ 0 & 8 \end{pmatrix}$$

$$\mathbf{E}) \begin{pmatrix} -3 & 5 \\ 8 & -12 \end{pmatrix}$$

B)
$$\begin{pmatrix} -1 & 3 \\ 8 & -8 \end{pmatrix}$$

$$\Gamma$$
) $\begin{pmatrix} 0 & 1 \\ 4 & -3 \end{pmatrix}$

5. Даны матрицы
$$A = \begin{pmatrix} 1 & -2 \\ -4 & 3 \end{pmatrix}$$
 и $B = \begin{pmatrix} -8 & 4 & 5 \\ \underline{12 & 0 & 1} \end{pmatrix}$, тогда матрица $A \cdot B$ имеет размерность ...

A)
$$(3\times3)$$

Б)
$$(3 \times 2)$$

B)
$$(2 \times 2)$$

$$\Gamma$$
) (2×3)

6. Матричная форма записи системы линейных уравнений
$$\begin{cases} 3x_1+x_2-x_3=2,\\ x_1-x_3=4,\\ 4x_1+2x_2-3x_3=0. \end{cases}$$

имеет вид ...

A)
$$\begin{pmatrix} 3 & 1 & -1 \\ 1 & -1 & 0 \\ 4 & 2 & -3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

$$\mathbf{E} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 0 & -1 \\ 4 & 2 & -3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

B)
$$\begin{pmatrix} 3 & 1 & -1 \\ 1 & 0 & -1 \\ 4 & 2 & -3 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix}
4 & 2 & -3
\end{pmatrix} \begin{pmatrix} x_3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\
B) \begin{pmatrix} 3 & 1 & -1 \\ 1 & 0 & -1 \\ 4 & 2 & -3
\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \\
B) \begin{pmatrix} 3 & 1 & -1 \\ 1 & 0 & -1 \\ 4 & 2 & -3
\end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \\
\Gamma) \begin{pmatrix} 3 & 1 & -1 \\ 1 & -1 & 0 \\ 4 & 2 & -3
\end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 0 \end{pmatrix}$$

- Если A(2; -3; 5) и B(-1; 4; 3), то разложение вектора \overrightarrow{AB} по базису \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} имеет 7. вид ...
 - A) $\vec{i} + \vec{j} + 8\vec{k}$
 - Б) $-2\vec{i} 12\vec{j} + 15\vec{k}$
 - B) $-3\vec{i} + 7\vec{j} 2\vec{k}$
 - Γ) $3\vec{i} 7\vec{j} + 2\vec{k}$
- Если $\vec{a}=3\vec{i}-2\vec{j}+\vec{k}$ и $\vec{b}=2\vec{i}+\vec{j}-2\vec{k}$, тогда вектор $\vec{a}+2\vec{b}$ имеет вид ... 8.
 - A) $7\vec{i} 3\vec{k}$
 - Б) $7\vec{i} 7\vec{j} + 5\vec{k}$
 - B) $5\vec{i} \vec{i} \vec{k}$
 - Γ) $\vec{i} \vec{i} \vec{k}$
- Вектор $\vec{a} = (5; -1; \lambda)$ перпендикулярен вектору $\vec{b} = (-2; -3; -7)$, если λ равно 9.

 - A) -1
 - Б) -18
 - B) 1
 - Γ) 8
- Скалярное произведение векторов $\vec{a} = (4; 6; 3)$ и $\vec{b} = (-5; 2; 6)$ равно ... 10.
 - A) 25
 - Б) -10
 - B) -25
 - Γ) 10

Ключ:

1	2	3	4	5	6	7	8	9	10
Γ	Α	Б	В	Γ	Б	В	A	A	Γ

Раздел: Введение в математический анализ

- 1. Область определения функции $y = \frac{\sqrt{9-x^2}}{x-4}$ принадлежит интервалу ...
 - A) $(4; +\infty)$
 - Б) [-3; 3]
 - B) $\left(-\infty; -3\right] \cup \left[3; +\infty\right)$
 - Γ) $\left(-\infty; -3\right] \cup \left[3; 4\right)$
- 2. Точками разрыва функции $y = \frac{x+3}{x(x+1)}$ являются точки ...
 - A) x = -1
 - Б) x = -3
 - B) x = 0
 - Г) точек разрыва нет
- 3. Множество значений функции $y = \sqrt{x^2 + 8x + 16} 4$ принадлежит интервалу ...
 - A) $\left(-\infty;+\infty\right)$
 - Б) $[4; +\infty)$
 - B) $\left[-4;+\infty\right)$
 - Γ) $(0; +\infty)$
- 4. Установите соответствие между функцией $y = \frac{4x-1}{2x+3}$ и ее асимптотами.
 - А) горизонтальная
- 1) $y = -\frac{1}{3}$
- Б) вертикальная
- 2) не имеет

В) наклонная

- 3) y = 2
- 4) x = 2
- 5) y = 2x 7
- 6) $x = -\frac{3}{2}$
- 7) y = 2x 4
- 5. Наименьшее значение функции $y = x^4 2x^2 + 1$ на отрезке [0, 2] равно ...
 - A) 9
 - **Б**) 1
 - B) 0
 - Γ) -1
- 6. На числовой прямой дана точка x = 16. Тогда ее « ϵ -окрестностью» может являться интервал ...
 - A) (15,8;16,2)
 - Б) (15,8;16,3)
 - B) (15,4;16,3)

- Γ) (15,5;16,6)
- 7. Предел функции $\lim_{x\to 2} \frac{3x^2 5x 2}{2x^2 x 6}$ равен ...
 - A) $\frac{3}{2}$
 - Б) 1
 - B) 7
 - Γ) -7
- 8. Предел функции $\lim_{x\to\infty} \frac{3x^2 4x + 1}{2x^2 + x 3}$ равен ...
 - A) 0
 - **b**) ∞
 - B) $-\frac{1}{3}$
 - Γ) $\frac{3}{2}$
- 9. Предел функции $\lim_{x\to -1} \frac{3x^2+1}{2x^2+2x+1}$ равен ...
 - A) 4
 - **P**) ∞
 - B) 1
 - Γ) $\frac{3}{2}$
- 10. Предел функции $\lim_{x\to\infty} \left(1 + \frac{2}{3x-2}\right)^{6x+1}$ равен ...
 - A) e^{-4}
 - Б) **-**4
 - $\stackrel{\cdot}{\mathrm{B}}) e^4$
 - Γ) 4

Ключ:

1	2	3	4	5	6	7	8	9	10
Б	A, B	А-3; Б-6; В-2	В	В	A	Б	Γ	A	В

Раздел: Дифференциальное исчисление функции одной переменной

- 1. Производная функции $y = 3^{\arcsin x}$ имеет вид ...
 - A) $3^{\arcsin x} \cdot \ln 3$
 - Б) $\arcsin x \cdot 3^{\arcsin x-1}$
 - B) $\frac{3^{\arcsin x} \cdot \ln 3}{\sqrt{1 x^2}}$

$$\Gamma) \frac{3^{\arcsin x}}{\sqrt{1-x^2}}$$

2. Производная функции $y = \frac{x+5}{x-1}$ имеет вид ...

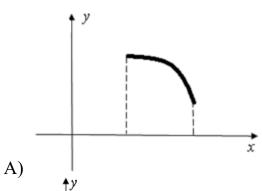
$$A) - \frac{6}{x-1}$$

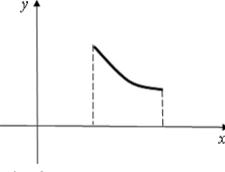
$$\text{ F) } \frac{2x+4}{(x-1)^2}$$

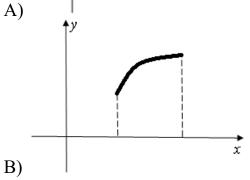
B)
$$\frac{4}{(x-1)^2}$$

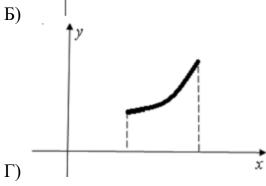
$$\Gamma) - \frac{6}{(x-1)^2}$$

- 3. Производная функции $y = \sin^3 2x$ имеет вид ...
 - A) $3\cos^2 2x$
 - Б) $6\sin^2 2x \cdot \cos 2x$
 - B) $6\sin 2x \cdot \cos 2x$
 - Γ) $3\sin 2x \cdot \cos 2x$
- 4. Производная функции $y = (x + 2) \cdot e^{x}$ имеет вид ...
 - A) $e^{x}(4-x)$
 - Б) *e*^x
 - B) $e^{x}(x+3)$
 - Γ) $e^{x}(4+2x+x^{2})$
- 5. Производная функции y arctgy = x, заданной неявно, имеет вид ...

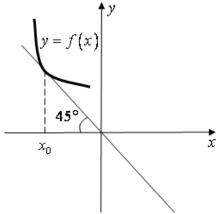

A)
$$y' = \frac{1}{1+y^2} + 1$$

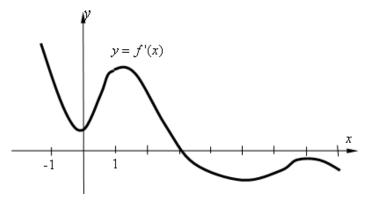

$$\mathbf{b}) \ \ y' = 1 - \frac{1}{y^2}$$


B)
$$y' = 1 + \frac{y}{1 + y^2}$$

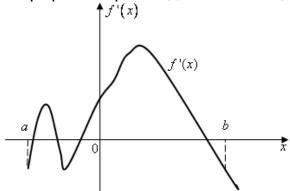

$$\Gamma$$
) $y' = 1 + \frac{1}{y^2}$

6. Укажите вид графика функции, для которой на всем отрезке [a;b] одновременно выполняются условия y>0, y'>0, y''>0.





7. На рисунке изображен график функции y = f(x).


Тогда значение производной этой функции в точке x_0 равно ...

- A) -1
- **Б**) 1
- B) $\frac{\sqrt{2}}{2}$
- Γ) $-\frac{1}{2}$
- 8. На рисунке изображен график производной функции y = f(x), заданной на отрезке [-1;8].

Тогда точкой максимума этой функции является...

- A) 8
- **Б**) 3
- B) 7
- Γ) 1
- 9. Функция y = f(x) задана на отрезке [a;b]. Укажите количество точек экстремума функции, если график ее производной имеет вид ...

- A) 4
- Б) 3
- B) 1
- Γ) 2
- 10. Абсцисса точки перегиба функции $y = 2x^3 3x^2 1$ равна ...
 - A) 0
 - **Б**) 1
 - B) 0,5
 - Γ) -1

Ключ:

1	2	3	4	5	6	7	8	9	10
В	Γ	Б	В	Γ	Γ	A	Б	A	В

Раздел: Интегральное исчисление функции одной переменной

- 1. Неопределенный интеграл $\int \frac{dx}{2x+5}$ равен ...
 - A) $2\ln|2x+5|+C$

$$\mathbf{b}) \, \frac{1}{2} \ln |2x + 5| + C$$

B)
$$-\frac{2}{(2x+5)^2} + C$$

$$\Gamma) - \frac{1}{(2x+5)^2} + C$$

Неопределенный интеграл $\int \cos(5x+2)dx$ равен ... 2.

A)
$$-(5x+2)\sin x + C$$

Б)
$$\sin(5x+2) + C$$

B)
$$-5\sin(5x+2) + C$$

$$\Gamma) \frac{1}{5} \sin(5x+2) + C$$

Неопределенный интеграл $\int \frac{4x^3}{2x^4+5} dx$ равен ... 3.

A)
$$\frac{1}{2} \ln \left| 2x^4 + 5 \right| + C$$

$$\text{ B) } \frac{1}{5} \ln \left| 2x^4 + 5 \right| + C$$

B)
$$-\frac{1}{2}\ln|2x^4+5|+C$$

$$\Gamma$$
) $\ln \left| 2x^4 + 5 \right| + C$

Неопределенный интеграл $\int \frac{dx}{x^2 - 5x + 6}$ равен ... 4.

A)
$$\frac{1}{2} \ln \left| \frac{x+2}{x+3} \right| + C$$

$$\text{E) } \ln \left| \frac{x-3}{x-2} \right| + C$$

B)
$$\frac{1}{2} \ln \left| \frac{x-3}{x-2} \right| + C$$

$$\Gamma$$
) $\ln \left| \frac{x+2}{x+3} \right| + C$

5. Установите соответствие между подынтегральной дробью и ее разложением на сумму простейших рациональных дробей.

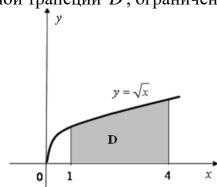
$$A) \int \frac{dx}{x^2 - 7x + 12}$$

$$1) \frac{A}{x+3} + \frac{B}{x+4}$$

Б)
$$\int \frac{2x+3}{(x+1)^2(x^2+1)} dx$$
 2) $\frac{A}{x-3} + \frac{B}{x-4}$

2)
$$\frac{A}{x-3} + \frac{B}{x-4}$$

B)
$$\int \frac{3x-1}{(x+1)^2(x-3)} dx$$


3)
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-3}$$

4)
$$\frac{A}{x+1} + \frac{Bx+C}{(x+1)^2} + \frac{D}{x-3}$$

5)
$$\frac{A}{x+1} + \frac{Bx+C}{(x+1)^2} + \frac{D}{x^2+1}$$

6)
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1}$$

- 6. Если $\int_{0}^{1} f(x)dx = 2$ и $\int_{-2}^{0} 2f(x)dx = 1$, то интеграл $\int_{-2}^{1} 2f(x)dx$ равен ...
 - A) 1
 - **Б**) 3
 - B) 5
 - Γ) $\frac{5}{2}$
- 7. Определенный интеграл $\int_{0}^{3} \frac{dx}{\sqrt{x+1}}$ равен ...
 - A) 1
 - Б) 2
 - B) 4
 - Γ) $\frac{1}{2}$
- 8. Площадь криволинейной трапеции D, ограниченной линиями равна ...

- A) $\frac{14}{3}$
- Б) $\frac{11}{3}$
- B) $\frac{10}{3}$
- Γ) $\frac{8}{3}$
- 9. На 1 гектар земли требуется 60 тонн органических удобрений. Сколько тонн органических удобрений необходимо внести на участок, если он ограничен линиями $y = x^3$, x = 0, x = 2 (x и y в км).?
 - A) 4
 - Б) 240
 - B) 12000
 - Γ) 24000

10. Формула Ньютона-Лейбница имеет вид ...

A)
$$\int_{a}^{b} f(x)dx = F(a) - F(b)$$

B)
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$\Gamma) \int_{a}^{b} f(x)dx = f(b) - f(a)$$

Ключ:

1	2	3	4	5	6	7	8	9	10
Б	Γ	Α	Б	А-2; Б-6; В-3	В	Б	A	Γ	В

Раздел: Дифференциальные уравнения

1. Общий интеграл дифференциального уравнения $\sin y dy = x^2 dx$ имеет вид ...

A)
$$-\cos y = 2x + C$$

E)
$$\cos y = \frac{x^3}{3} + C$$

B)
$$-\cos y = \frac{x^3}{3} + C$$

$$\Gamma$$
) $\cos y = 2x + C$

2. Общий интеграл решения дифференциального уравнения $y' = y \ln x$ имеет вид

. . .

A)
$$-\frac{1}{y^2} = x(\ln x + 1) + C$$

$$|S| \ln |y| = x(\ln x - 1) + C$$

$$B) - \frac{1}{v^2} = x \ln x + C$$

$$\Gamma) \ln |y| = x \ln x + C$$

3. Решением дифференциального уравнения $y' + \frac{y}{x} = x^2$ является ...

$$A) y = x^3 + \frac{C}{x}$$

$$5) y = \frac{x^3}{4} + \frac{C}{x}$$

B)
$$y = x^3 + C$$

$$\Gamma) \ \ y = \frac{x^3}{4} + C$$

4. Решением дифференциального уравнения $(3x^2 + 6xy^2)dx + (6x^2y + 4y^3)dy = 0$ является ...

A)
$$x^3 + 3x^2y^2 + y^4 = C$$

$$\mathbf{E}) \ 3x^3 + 6x^2y^2 + 4y^4 = C$$

B)
$$x^3 + 2x^3y + 2xy^3 + y^4 = C$$

$$\Gamma$$
) $3x^3 + 6x^2y + 6xy^2 + 4y^4 = C$

5. Установите соответствие между дифференциальными уравнениями (ДУ) 1-го порядка и их видами.

$$A) \frac{y'}{2x} = \frac{y}{x^2 + 1}$$

1) линейное неоднородное ДУ 1-го порядка

$$\mathbf{b}) \ \ \mathbf{y'} + 4\mathbf{y} = e^{-4x}$$

2) ДУ в полных дифференциалах

B)
$$xy' = y \ln\left(\frac{y}{x}\right)$$

3) уравнение Бернулли

- 4) ДУ с разделяющимися переменными
- 5) однородное ДУ 1-го порядка
- 6. Решением дифференциального уравнения $xy'' 2y' = 2x^4$ является ...

A)
$$y = \frac{1}{2}x^2 + C_1x + C_2$$

$$\mathbf{b}) \ \ y = \frac{1}{3}x^3 + C_1x + C_2$$

B)
$$y = C_1 x^4 + x^2 + C_2$$

$$\Gamma$$
) $y = \frac{1}{5}x^5 + \frac{1}{3}C_1x^3 + C_2$

7. Установите соответствие между дифференциальными уравнениями и его решением.

A)
$$y'' - 10y' + 25y = 0$$

1)
$$y = e^{-5x}(C_1 + C_2x)$$

$$\mathbf{b}) \ \mathbf{v''} + 3\mathbf{v'} + 2\mathbf{v} = 0$$

2)
$$y = C_1 e^x + C_2 e^{2x}$$

B)
$$y'' + 4y = 0$$

$$3) y = C_1 \cos 2x + C_2 \sin 2x$$

$$4) y = C_1 \cos x + C_2 \sin x$$

5)
$$y = C_1 e^{-2x} + C_2 e^{-x}$$

6)
$$y = e^{5x}(C_1 + C_2x)$$

8. Определить и записать структуру частного решения \overline{y} линейного неоднородного дифференциального уравнения $y'' + 3y' - 4y = 6x \cdot e^{-x}$ по виду правой части.

A)
$$\overline{y} = Ax \cdot e^{-x}$$

$$\mathbf{b}) \ \overline{\mathbf{y}} = (A\mathbf{x} + B) \cdot e^{-\mathbf{x}}$$

B)
$$\overline{y} = (Ax^2 + Bx) \cdot e^{-x}$$

$$\Gamma) \ \overline{y} = (Ax^3 + Bx^2) \cdot e^{-x}$$

- 9. Если y_1 и y_2 два линейно независимых решения линейного однородного дифференциального уравнения 2-го порядка, то общее решение этого уравнения имеет вид ...
 - A) $y = C_1 y_1 + C_2 y_2$
 - $\mathbf{b}) \ \ y = C(y_1 + y_2)$
 - B) $y = C \cdot y_1 \cdot y_2$
 - $\Gamma) \ \ y = \frac{y_1}{y_2}$
- 10. Если корни характеристического уравнения комплексные числа, то общее решение линейного однородного дифференциального уравнения 2-гопорядка имеет вид ...
 - A) $y = e^{kx}(C_1 + C_2 x)$
 - $\mathbf{b}) \ \ y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$
 - B) $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$
 - $\Gamma) y = C_1 \cos \alpha x + C_2 \sin \beta x$

Ключ:

1	2	3	4	5	6	7	8	9	10
В	Б	Б	A	А-4,Б-1,В-5	Γ	А-6,Б-5,В-3	Б	A	В

Раздел: Теория вероятностей

- 1. В ящике 100 деталей, из них 10 бракованных. Наудачу извлечена одна деталь. Вероятность того, что она бракованная равна ...
 - A) 0,1
 - Б) 0,9
 - B) 0,01
 - Γ) 0,99
- 2. В группе 16 студентов, среди которых 8 активистов. По списку наудачу отобраны 3 студента. Вероятность того, что среди отобранных студентов не менее 1 активиста равна ...
 - A) 0,1
 - Б) 0,4
 - B) 0,9
 - Γ) 0,01
- 3. Сборщик получил две коробки одинаковых деталей, изготовленных на заводе №1 и три коробки деталей, изготовленных на заводе №2. Вероятность того, что деталь завода №1 стандартна, равна 0,9, а завода №2 0,7. Из наудачу взятой коробки сборщик извлек деталь. Вероятность того, что извлеченная деталь стандартна равна
 - A) $\frac{21}{50}$

- B) $\frac{21}{39}$
- Всхожесть семян равна 90%. Для опыта отбирают 6 семян. Вероятность того, 4. что будет не менее 5 всходов равна ...
 - A) 0,354
 - Б) 0,590
 - B) 0,886
 - Γ) 0,945
- 5. Дискретная случайная величина задана законом распределения вероятности

X	10	12	20	25	30
p	0,1	0,2	а	0,2	b

Тогда ее математическое ожидание равно 22,4, если ...

- A) a = 0.4 b = 0.1
- B) a = 0.3 b = 0.2
- B) a = 0.2 b = 0.3
- Γ) a = 0,1 b = 0,4
- 6. Непрерывная случайная величина X задана функцией распределения 0, $ecnu \ x \leq 0$;

$$F(x) = \begin{cases} o, & \text{cent } x = 0, \\ a(x+2), & \text{ecnu } 0 < x \le 1; \\ 1, & \text{ecnu } x > 1. \end{cases}$$

Тогда значение параметраа равно...

- A) -1
- Б) 1
- B) 2
- Γ) $\frac{1}{2}$
- Задана плотность распределения непрерывной случайной величины X7.

$$f(x) = \begin{cases} 2x, & ecnu \ x \in (0;1]; \\ 0, & ecnu \ x \notin (0;1]. \end{cases}$$

Тогда интегральная функция распределения имеет вид ...

A)
$$F(x) = \begin{cases} x^2, & ecnu \ x \in (0;1]; \\ 0, & ecnu \ x \notin (0;1]. \end{cases}$$

A)
$$F(x) = \begin{cases} x^2, & ecnu \ x \in (0;1]; \\ 0, & ecnu \ x \notin (0;1]. \end{cases}$$

Б) $F(x) = \begin{cases} 0, & ecnu \ x \leq 0; \\ 2x, & ecnu \ 0 < x \leq 1; \\ x, & ecnu \ x > 1. \end{cases}$

B)
$$F(x) = \begin{cases} 0, & ecnu \ x \le 0; \\ 2x, & ecnu \ 0 < x \le 1; \\ 1, & ecnu \ x > 1. \end{cases}$$

$$\Gamma) F(x) = \begin{cases} 0, & ecnu \ x \le 0; \\ x^2, & ecnu \ 0 < x \le 1; \\ 1, & ecnu \ x > 1. \end{cases}$$

величина X задана интегральной функцией 8. Непрерывная случайная $ecлu x \leq 1$; распределения $F(x) = \begin{cases} \frac{1}{2}(x-1), & ecnu \ 1 < x \le 3; \end{cases}$

Тогда математическое ожидание равно...

- Б) 2

- Случайная величина X распределена равномерно на отрезке [1, 5]. Тогда 9. плотность распределения вероятностей имеет вид...

$$[0, ecnu x \notin [1; 5].$$

Б)
$$f(x) = \begin{cases} \frac{1}{4}, & ecnu \ 1 \le x \le 5; \end{cases}$$

B)
$$f(x) = \begin{cases} \frac{1}{6}, & ec\pi u \ x \in [1; 5]; \end{cases}$$

$$[0, ecnu x \notin [1; 5].$$

$$\Gamma) f(x) = \begin{cases} \frac{1}{6}, & ecnu \ 1 \le x \le 5; \end{cases}$$

10. Нормально распределенная случайная задана полностью $f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-7)^2}{8}}$. Тогда математическое распределения вероятностей ожидание равно...

- A) 2
- Б) 4
- B) 7
- Γ) 8

Ключ:

1	2	3	4	5	6	7	8	9	10
A	В	Б	В	Γ	Б	Γ	Б	A	В

Раздел: Основы математической статистики

1. Из генеральной совокупности извлечена выборка объема n = 50:

x_i	1	2	3	4
n_i	10	\mathbf{n}_2	8	7

Тогда n_2 равен...

- A) 50
- Б) 26
- B) 25
- Γ) 9

2. Данной выборке 2, 4, 5, 7, 5, 3, 2, 4, 7, 7, 10, 2, 5, 7, 10 соответствует статистический ряд распределения ...

			1 '	1	. 1 ' '		
	x_i	2	3	4	5	7	10
A)	n_i	3	1	2	3	4	2

	x_i	2	4	5	7	5	3	2
Б)	n_i	4	7	7	10	2	5	7

	x_i	2	5	5	2	7	10	5	10
B)	n_{i}	4	7	3	4	7	2	7	1
–)									

	x_i	2	4	5	7	5	3	2	10
Γ)	n_i	3	1	3	4	1	1	1	2

3. По выборке n = 100 построена гистограмма частот. Тогда значение а равно ...

A) 10

- Б) 9
- B) 11
- Γ) 60
- 4. Задано распределение частот выборки

x_i	2	5	9	10
$n_{\dot{l}}$	3	10	9	3

Тогда эмпирическая функция распределения имеет вид ...

а эмпирическая функц

$$\begin{cases} 0, & x \leq 2; \\ 3 & 2 < x \leq 5; \\ 13, & 5 < x \leq 9; \\ 22, & 9 < x \leq 10; \\ 25, & x > 10. \end{cases}$$

 $\begin{cases} 0,12, & x \leq 2; \\ 0,52, & 2 < x \leq 5; \\ 0,76, & 5 < x \leq 9; \\ 0,48, & 9 < x \leq 10; \\ 1, & x > 10. \end{cases}$
 $\begin{cases} 0, & x \leq 2; \\ 0,12, & 2 < x \leq 5; \\ 0,52, & 5 < x \leq 9; \\ 0,88, & 9 < x \leq 10; \\ 1, & x > 10. \end{cases}$
 $\begin{cases} 0, & x \leq 2; \\ 0,52, & 5 < x \leq 9; \\ 0,88, & 9 < x \leq 10; \\ 1, & x > 10. \end{cases}$
 $\begin{cases} 0, & x \leq 2; \\ 0,52, & 2 < x \leq 5; \\ 0,76, & 5 < x \leq 9; \\ 0,48, & 9 < x \leq 10; \\ 1, & x > 10. \end{cases}$

- 5. Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 6; 7; 10; 11; 12; ... Тогда несмещенная оценка математического ожидания равна ...
 - A) 11,5
 - Б) 9,4
 - B) 9,2
 - Γ) 10
- 6. Выборочная средняя заработная плата работников одного из цехов завода составляет ...

Заработная	50-75	75-	100-	125-	150-	175-	200-
плата, у.е.		100	125	150	175	200	225
Число	12	23	20	37	19	15	9
работников							

- A) 132,7
- Б) 133
- B) 137,5
- Γ) 150
- 7. Выборочная дисперсия по данному распределению выборки объема n = 10 равна ...

x_{i}	186	192	194
n_i	2	5	3

- A) 7,90
- Б) 8,04
- B) 8,19
- Γ) 8,24
- 8. Для выборки объема n=5 вычислена выборочная дисперсия $D_{\scriptscriptstyle B}=36$. Тогда исправленная дисперсия S^2 для этой выборки равна ...
 - A) 45
 - Б) 9
 - B) 28,8
 - Γ) 39,5
- 9. Из генеральной совокупности извлечена выборка. Тогда мода равна ...

x_i	2	5	9	10
n_i	3	1	4	2

- A) 10
- **Б**) 9
- B) 5
- Γ) 4
- 10. Из генеральной совокупности извлечена выборка. Тогда медиана равна ...

x_{i}	2	5	9	10
n_i	3	1	4	2

- A) 3,5
- Б) 7
- B) 9,5
- Γ) 9

Ключ:

1	2	3	4	5	6	7	8	9	10
В	Α	A	В	В	A	Б	A	Б	Γ

2.2 Промежуточная аттестация

Вопросы к зачету (1 семестр)

- 1. Определители II, III порядка. Свойства определителей.
- 2. Алгебраическое дополнение элемента определителя. Способы вычисления определителей.
- 3. Решение систем линейных уравнений методом Крамера.
- 4. Понятие матрицы. Виды матриц.
- 5. Действия над матрицами.
- 6. Обратная матрица. Матричный метод решения систем линейных уравнений.
- 7. Решение систем линейных уравнений методом Гаусса.
- 8. Ранг матрицы.
- 9. Теорема Кронекера-Капели. Исследование систем m-линейных с n-неизвестными.
- 10. Координаты в пространстве. Понятие вектора.
- 11. Проекция вектора на ось и на оси координат.
- 12. Разложение вектора по базису.
- 13. Линейные операции над векторами.
- 14. Направляющие косинусы вектора.
- 15. Скалярное произведение векторов, его свойства.
- 16. Выражение скалярного произведения через координаты векторов.
- 17. Угол между векторами. Условие перпендикулярности векторов.
- 18. Векторное произведение векторов, его свойства.
- 19. Выражение векторного произведения через координаты векторов. Условие параллельности векторов.
- 20. Смешанное произведение трех векторов, его свойства.
- 21. Условие компланарности трех векторов.
- 22. Вычисление смешанного произведения трех векторов, разложенных по ортам.
- 23. Предел функции при $x \to \hat{a}$.
- 24. Односторонние пределы. Связь между односторонними пределами и пределом функции.
- 25. Предел функции при $x \to \infty$.
- 26. Функция, стремящаяся к бесконечности. Бесконечно-большая величина.
- 27. Ограниченные функции.
- 28. Бесконечно-малые величины и их свойства. Связь между бесконечно-малыми и бесконечно-большими величинами.
- 29. Основные теоремы о пределах.
- 30. Первый замечательный предел.
- 31. Второй замечательный предел.
- 32. Непрерывность функции.
- 33. Точки разрыва функции. Классификация точек разрыва.
- 34. Понятие производной.
- 35. Геометрический смысл производной. Уравнение касательной и нормали.
- 36. Физический смысл производной.
- 37. Дифференцируемость функций.
- 38. Основные правила дифференцирования функций.

- 39. Таблица основных производных.
- 40. Производная сложной функции.
- 41. Неявное задание функции. Производная функции, заданной неявно.
- 42. Производная логарифмической функции.
- 43. Сложная показательная функция. Логарифмическое дифференцирование.
- 44. Производная обратной функции. Производные обратных тригонометрических функций.
- 45. Дифференциал функции. Приложение дифференциала.
- 46. Геометрическое значение дифференциала.
- 47. Производные высших порядков. Механическое значение второй производной.
- 48. Дифференциалы различных порядков.
- 49. Правило Лопиталя.
- 50. Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа).
- 51. Признак монотонности функции.
- 52. Точки локального экстремума.
- 53. Необходимое условие локального экстремума.
- 54. Достаточные условия локального экстремума.
- 55. Направление выпуклости и точки перегиба графика функции.
- 56. Необходимое условие существования точки перегиба.
- 57. Достаточное условие существования точки перегиба.
- 58. Асимптоты графика функции.
- 59. Общая схема исследования и построения графика функции.
- 60. Наибольшее и наименьшее значение функции на отрезке.

Вопросы к экзамену (2 семестр)

- 1. Первообразная функции и неопределенный интеграл.
- 2. Основные свойства неопределенного интеграла.
- 3. Основные методы интегрирования: непосредственное интегрирование.
- 4. Интегрирование подстановкой в неопределенном интеграле.
- 5. Интегрирование по частям в неопределенном интеграле.
- 6. Интегрирование функций, содержащих квадратный трехчлен в знаменателе.
- 7. Интегрирование простейших рациональных дробей.
- 8. Разложение рациональных дробей на простейшие. Метод неопределенных коэффициентов.
- 9. Определенный интеграл. Его геометрический смысл.
- 10. Основные свойства определенного интеграла.
- 11. Вычисление определенного интеграла. Формула Ньютона-Лейбница.
- 12. Метод замены переменной в определенном интеграле.
- 13. Интегрирование по частям в определенном интеграле.
- 14. Вычисление площади криволинейной трапеции.
- 15. Вычисление длины дуги кривой.
- 16. Вычисление объема тела вращения.
- 17. Вычисление площади поверхности вращения.
- 18. Дифференциальные уравнения первого порядка.
- 19. Дифференциальные уравнения с разделяющимися уравнениями.

- 20. Уравнения в полных дифференциалах.
- 21. Линейные дифференциальные уравнения первого порядка.
- 22. Уравнение Бернулли.
- 23. Дифференциальные уравнения второго порядка.
- 24. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- 25. Линейные однородные уравнения второго порядка с постоянными коэффициентами.
- 26. Линейные неоднородные уравнения второго порядка с постоянными коэффициентами.
- 27. Дифференциальные уравнения высших порядков.
- 28. Основные понятия теории вероятностей. Виды событий.
- 29. Классическое определение вероятности. Основные формулы комбинаторики.
- 30. Относительная частота. Устойчивость относительной частоты.
- 31. Сумма и произведение двух (нескольких) событий.
- 32. Теорема сложения вероятностей несовместных событий.
- 33. Полная группа событий. Теорема сложения вероятностей событий, образующих полную группу.
- 34. Противоположные события. Теорема сложения вероятностей противоположных событий.
- 35. Зависимые и независимые события. Теорема умножения вероятностей независимых событий.
- 36. Вероятность появления хотя бы одного события.
- 37. Условная вероятность. Теорема вероятности совместного появления зависимых событий.
- 38. Теорема вероятности суммы двух совместных событий.
- 39. Формула полной вероятности.
- 40. Формула Байеса.
- 41. Повторные независимые испытания. Формула Бернулли.
- 42. Локальная теорема Лапласа.
- 43. Интегральная теорема Лапласа.
- 44. Случайные величины. Виды случайных величин.
- 45. Дискретная случайная величина. Закон ее распределения. Многоугольник распределения.
- 46. Простейший поток событий. Формула Пуассона.
- 47. Числовые характеристики случайных величин: математическое ожидание и его свойства.
- 48. Числовые характеристики случайных величин: дисперсия, свойства дисперсии, способы вычисления дисперсии.
- 49. Числовые характеристики случайных величин: среднее квадратическое отклонение.
- 50. Числовые характеристики случайных величин: начальные и центральные моменты.
- 51. Интегральная функция распределения и ее свойства.
- 52. График интегральной функции распределения для дискретной и непрерывной случайной величины.

- 53. Дифференциальная функция распределения, ее свойства.
- 54. График дифференциальной функции распределения.
- 55. Вычисление интегральной функции распределения по известной дифференциальной функции.
- 56. Закон равномерного распределения вероятностей. Дифференциальная и интегральная функции равномерного распределения.
- 57. Нормальный закон распределения. График плотности нормального распределения.
- 58. Вероятность попадания в заданный интервал нормально распределенной случайной величины.
- 59. Вычисление вероятности заданного отклонения нормально распределенной случайной величины.
- 60. Правило трех сигм.
- 61. Генеральная и выборочная совокупность.
- 62. Способы случайного отбора.
- 63. Статистическое распределение выборки.
- 64. Эмпирическая функция распределения.
- 65. Полигон статистического распределения.
- 66. Гистограмма статистического распределения.
- 67. Понятие статистической оценки и требования к ним.
- 68. Точечные оценки параметров распределения: выборочное среднее.
- 69. Точечные оценки параметров распределения: выборочная и исправленная дисперсия.
- 70. Точечные оценки параметров распределения: выборочное и исправленное среднее квадратическое отклонение.
- 71. Характеристики вариационного ряда: мода и медиана.
- 72. Характеристики вариационного ряда: размах и коэффициент вариации.
- 73. Интервальные оценки параметров распределения.
- 74. Доверительные интервалы оценки математического ожидания нормального распределения при известном среднем квадратическом отклонении.
- 75. Доверительные интервалы оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении.
- 76. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.
- 77. Доверительные интервалы для оценки вероятности по относительной частоте.
- 78. Свойства доверительных интервалов.
- 79. Асимметрия эмпирического распределения.
- 80. Эксцесс эмпирического распределения.

2.3 Типовой вариант экзаменационного тестирования

Семестр 1

1. Алгебраическое дополнение элемента a_{11} матрицы $A = \begin{pmatrix} 4 & -3 & 1 \\ 2 & 5 & -7 \\ 3 & -2 & 1 \end{pmatrix}$ равно ...

2. Дана система уравнений $\begin{cases} x_1+x_2-3x_3=3;\\ x_1-2x_3=1;\\ 2x_1-2x_2+3x_3=-2. \end{cases}$. Тогда переменная x_1 равна

. . .

- 3. Если $A = \begin{pmatrix} -1 & 2 \\ 4 & -5 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$, то матрица C = 2A + B имеет вид ...
 - a) $\begin{pmatrix} -3 & 5 \\ 8 & -12 \end{pmatrix}$
 - b) $\begin{pmatrix} -1 & 3 \\ 8 & -8 \end{pmatrix}$
 - c) $\begin{pmatrix} 0 & 1 \\ 4 & -3 \end{pmatrix}$
 - d) $\begin{pmatrix} -1 & 3 \\ 0 & 8 \end{pmatrix}$
- 4. Заданы матрицы $A = \begin{pmatrix} -1 & 2 \\ -4 & 3 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 1 & 3 \\ 5 & 4 & 6 \end{pmatrix}$, тогда элемент c_{13} матрица $C = A \cdot B$ равен . . .
- 5. Если A(2; -3; 5) и B(-1; 4; 3), то разложение вектора \overrightarrow{AB} по базису \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} имеет вид ...
 - a) $\vec{i} + \vec{j} + 8\vec{k}$
 - b) $-3\vec{i} + 7\vec{j} 2\vec{k}$
 - c) $3\vec{i} 7\vec{j} + 2\vec{k}$
 - d) $-2\vec{i} 12\vec{j} + 15\vec{k}$
- 6. Если $\vec{a} \cdot \vec{b} = 6\sqrt{2}$, $|\vec{a}| = 4$, $|\vec{b}| = 3$, тогда угол между векторами \vec{a} и \vec{b} равен
 - a) $\frac{\pi}{3}$
 - b) $\frac{3\pi}{4}$

- c) $\frac{\pi}{4}$

Если $\vec{a} = (4; 6; 3)$ и $\vec{b} = (-5; 2; 6)$, тогда векторное произведение векторов \vec{a} и \vec{b} равно ...

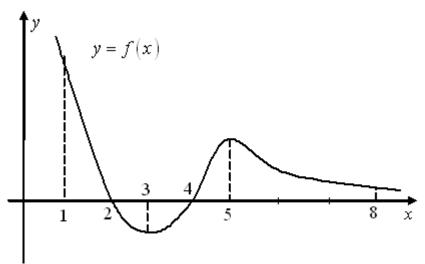
- $30\vec{i} 39\vec{j} 38\vec{k}$ a)
- b) $-30\vec{i} 39\vec{j} + 38\vec{k}$
- c) $30\vec{i} + 39\vec{j} + 38\vec{k}$
- d) $30\vec{i} 39\vec{j} + 38\vec{k}$

Значение предела $\lim_{a\to\infty} \frac{3a^2-4a+1}{a^3+3a-4}$ равно... 8.

- a)
- b)
- d)

Значение предела $\lim_{x\to 2} \frac{3x^2 - 5x - 2}{2x^2 - x - 6}$ равно ... 9.

- a)
- b) 7 c) -7
- d)


Производная функции $y = 5^{tg^2x}$ имеет вид ... 10.

- $y' = 5^{tg^2x} \cdot \ln 5 \cdot \frac{2tgx}{\cos^2 x}$ a)
- b) $y' = \frac{5^{tg^2x} \cdot \ln 5}{\cos^2 x}$
- c) $y' = tg^2 x \cdot 5^{tg^2 x 1} \cdot \frac{1}{\cos^2 x}$
- d) $y' = tg^2 x \cdot 5^{tg^2 x 1} \cdot \frac{2tgx}{\cos^2 x}$

Значение предела $\lim_{x\to\infty} \left(\frac{3x+4}{3x-1}\right)^{4x+2}$ равно ... 11.

- a) $\frac{20}{3}$
- b) $-\frac{20}{3}$

- c)
- d)
- На рисунке изображен график функции y = f(x) на отрезке [1;8]. 12. Установите соответствие между заданными условиями и промежутками:

y < 0, y' < 0, y'' > 0a)

1)(1;2)

y < 0, y' > 0, y'' > 0b)

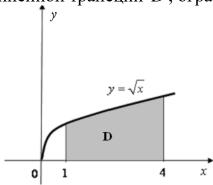
(2;3)

y > 0, y' > 0, y'' < 0c)

- 3)(3;4)
- 4)(4;5)
- 5) (5;8)

Ключ:

- 1. -9
- 2. 1 3. b
- 4. 9
- 5. b
- 6. c


- 7.
- 8. b
- 9. d
- 10.a
- 11.d
- 12.2, 3, 4

Семестр 2

- Неопределенный интеграл $\int \frac{4x^3}{2x^4+5} dx$ равен ... 1.
 - a) $\frac{1}{2} \ln |2x^4 + 5| + C$
 - b) $\frac{1}{5} \ln |2x^4 + 5| + C$
 - c) $-\frac{1}{2}\ln|2x^4+5|+C$
 - d) $\ln |2x^4 + 5| + C$
- Если $\int_{0}^{1} f(x)dx = 2$ и $\int_{-2}^{0} 2f(x)dx = 1$, то интеграл $\int_{-2}^{1} 2f(x)dx$ равен ... a) 1

- b) 3
- c) 5
- d) $\frac{5}{2}$

3. Площадь криволинейной трапеции D, ограниченной линиями равна ...

- a) $\frac{14}{3}$
- b) $\frac{11}{3}$
- c) $\frac{10}{3}$
- d) $\frac{8}{3}$

4. Общий интеграл дифференциального уравнения $\sin y dy = x^2 dx$ имеет вид

. . .

a)
$$-\cos y = 2x + C$$

b)
$$\cos y = \frac{x^3}{3} + C$$

c)
$$-\cos y = \frac{x^3}{3} + C$$

d)
$$\cos y = 2x + C$$

5. Установите соответствие между дифференциальными уравнениями (ДУ) 1-го порядка и их видами.

$$a) \frac{y'}{2x} = \frac{y}{x^2 + 1}$$

1) линейное неоднородное ДУ 1-го порядка

b)
$$y' + 4y = e^{-4x}$$

2) уравнение Бернулли

c)
$$y' - 2xy = ye^{x^2}$$

3) ДУ с разделяющимися переменными

6. Установите соответствие между дифференциальными уравнениями и его решением.

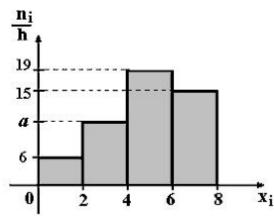
a)
$$y'' - 10y' + 25y = 0$$

1)
$$y = e^{-5x}(C_1 + C_2x)$$

b)
$$y'' + 3y' + 2y = 0$$

2)
$$y = C_1 e^x + C_2 e^{2x}$$

c)
$$y'' + 4y = 0$$


3)
$$y = C_1 \cos 2x + C_2 \sin 2x$$

- 4) $y = C_1 \cos x + C_2 \sin x$
- 5) $y = C_1 e^{-2x} + C_2 e^{-x}$
- 6) $y = e^{5x}(C_1 + C_2x)$
- Определить и записать структуру частного решения \overline{y} линейного 7. неоднородного дифференциального уравнения $y'' + 3y' - 4y = 6x \cdot e^{-x}$ по виду правой части.
 - a) $\overline{v} = Ax \cdot e^{-x}$
 - b) $\overline{y} = (Ax + B) \cdot e^{-x}$
 - c) $\overline{y} = (Ax^2 + Bx) \cdot e^{-x}$
 - d) $\overline{v} = (Ax^3 + Bx^2) \cdot e^{-x}$
 - В ящике 100 деталей, из них 10 бракованных. Наудачу извлечена одна 8. деталь. Вероятность того, что она бракованная равна ...
 - a) 0,99
 - b) 0,9
 - c) 0.01
 - d) 0,1
- Всхожесть семян равна 90%. Для опыта отбирают 6 семян. Вероятность 9. того, что будет не менее 5 всходов равна ...
 - a) 0,354
 - b) 0,590
 - c) 0,886
 - d) 0,945
- Случайная величина X распределена равномерно на отрезке [1, 5]. Тогда 10. плотность распределения вероятностей имеет вид ...

 - a) $f(x) = \begin{cases} \frac{1}{4}, & ecnu \ x \in [1; 5]; \\ 0, & ecnu \ x \notin [1; 5]. \end{cases}$ b) $f(x) = \begin{cases} 0, & ecnu \ x < 1; \\ \frac{1}{4}, & ecnu \ 1 \le x \le 5; \\ 1, & ecnu \ x > 5. \end{cases}$ c) $f(x) = \begin{cases} \frac{1}{6}, & ecnu \ x \in [1; 5]; \\ 0, & ecnu \ x \notin [1; 5]. \end{cases}$

d)
$$f(x) = \begin{cases} 0, & ecnu \ x < 1; \\ \frac{1}{6}, & ecnu \ 1 \le x \le 5; \\ 1, & ecnu \ x > 5. \end{cases}$$

- 11. Нормально распределенная случайная величина задана полностью распределения вероятностей $f(x) = \frac{1}{2\sqrt{2\pi}}e^{\frac{(x-7)^2}{8}}$. Тогда математическое ожидание равно ...
 - a) 2
 - b) 4
 - c) 7
 - d) 8
- 12. По выборке n = 100 построена гистограмма частот. Тогда значение а равно ...

- a) 10
- b) 9
- c) 60
- d) 11
- 13. Из генеральной совокупности извлечена выборка. Тогда мода равна ...

x_{i}	2	5	9	10
n_i	3	1	4	2

- a) 10
- b) 9
- c) 5
- d) 2
- 14. Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 6; 7; 10; 11; 12; ... Тогда несмещенная оценка математического ожидания равна ...
 - a) 9,4
 - b) 9,2
 - c) 10
 - d) 11,5

15. Для выборки объема n=5 вычислена выборочная дисперсия $D_{\scriptscriptstyle B}=36$. Тогда исправленная дисперсия S^2 для этой выборки равна ...

- a) 45
- b) 30
- c) 38,5
- d) 43,5

Ключ:

1. a	2. 2, 6, 3	3. c	4. a	5. 2, 4, 5
6. b	7. d	8. c	9. 4, 1, 5	10. 6, 5, 3
11. b	12. d	13. a	14. 3, 1, 2	15. c

2.4 Типовой экзаменационный билет

Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасская государственная сельскохозяйственная академия»

	(код и наименование направления подготовки/специальности)
	Ветеринарный врач
	(профиль подготовки/магистерская программа/специализация)
	Кафедра педагогических технологий
	(наименование кафедры)
Дисциплина	Математика и математическая статистика (1 семестр)
	(наименование дисциплины)
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

разрыва. 3. Задача. Зависимость пути от времени задана уравнением $S = t \cdot \ln(t+1)$, (t- в

2. Непрерывность функции. Точки разрыва функции. Классификация точек

3. Задача. Зависимость пути от времени задана уравнением $S = t \cdot \ln(t+1)$, (t-8) секундах, S - B метрах). Найти скорость движения в конце пятой секунды.

Составитель	Кондаурова И.Г.		
	(подпись)	(расшифровка подписи)	
Заведующий			
кафедрой		Сергеева И.А.	
	(подпись)	(расшифровка подписи)	

Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасская государственная сельскохозяйственная академия»

	36.05.01 Ветеринария		
	(код и наименование направления подготовки/специальности)		
	Ветеринарный врач		
	(профиль подготовки/магистерская программа/специализация)		
	Кафедра педагогических технологий		
	(наименование кафедры)		
Дисциплина	Математика и математическая статистика (2 семестр)		
	(наименование дисциплины)		

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Первообразная функции и неопределенный интеграл. Основные свойства неопределенного интеграла.
 - 2. Классическое определение вероятности. Формулы комбинаторики.
- 3. Задача. Определить эмпирическую функцию распределения, если статистический ряд распределения имеет вид:

X_i	23	25	28	29
n_i	15	10	20	5

Составитель		Кондаурова И.Г.	
	(подпись)	(расшифровка подписи)	
Заведующий			
кафедрой		Сергеева И.А.	
	(подпись)	(расшифровка подписи)	

3 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ

Оценка знаний по дисциплине проводится с целью определения уровня освоения предмета, включает:

- -тест;
- собеседование.

Оценка качества подготовки на основании выполненных заданий ведется преподавателям (с обсуждением результатов), баллы начисляются в зависимости от соответствия критериям таблицы 1.

Оценка качества подготовки по результатам самостоятельной работы студента ведется:

- 1) преподавателем оценка глубины проработки материала, рациональность и содержательная ёмкость представленных интеллектуальных продуктов, наличие креативных элементов, подтверждающих самостоятельность суждений по теме;
 - 2) группой в ходе обсуждения представленных материалов;
 - 3) студентом лично путем самоанализа достигнутого уровня понимания темы. По дисциплине предусмотрены формы контроля качества подготовки:
- текущий (осуществление контроля за всеми видами аудиторной и внеаудиторной деятельности студента с целью получения первичной информации о ходе усвоения отдельных элементов содержания дисциплины);
- промежуточный (оценивается уровень и качество подготовки по конкретным разделам дисциплины).

Результаты текущего и промежуточного контроля качества выполнения студентом запланированных видов деятельности по усвоению учебной дисциплины являются показателем того, как студент работал в течение семестра. Итоговый контроль проводится в форме промежуточной аттестации студента — экзамена (зачета).

Текущий контроль успеваемости предусматривает оценивание хода освоения дисциплины, промежуточная аттестация обучающихся — оценивание результатов обучения по дисциплине, в том посредством испытания в форме экзамена (зачета).

Для оценки качества подготовки студента по дисциплине в целом составляется рейтинг — интегральная оценка результатов всех видов деятельности студента, осуществляемых в процессе ее изучения. Последняя представляется в балльном исчислении согласно таблице 2.

Защита практических работ проводится преподавателем со студентом в день проведения практического занятия в соответствии с учебным расписанием. Преподаватель проверяет правильность выполнения задач и заданий студентом и сделанных им выводов, контролирует знание пройденного материала студентом с помощью собеседования.

Собеседование является неотъемлемой частью контроля знаний лекционного материала и самостоятельной работы студентов. Студент отвечает на поставленные преподавателем вопросы по контролируемой теме, преподаватель оценивает качество усвоения пройденного материала.

Тестирование по теме осуществляется самостоятельно студентом после изучения темы и способствует самоанализу и самооценке достигнутого уровня

понимания темы. Преподаватель проверяет правильность выполнения теста студентом, контролирует знание студента с помощью собеседования.

Проработка конспекта лекций и учебной литературы осуществляется студентами в течение всего семестра, после изучения новой темы. К экзамену допускаются студенты, выполнившие все виды текущей аттестации –практические занятия, тесты по темам, задания для самостоятельной работы.